

With Dustin Hoffman and Clint Eastwood

Circa 1967

My POV

- My Father was a Chemical Engineer who (briefly) managed a Polyester Resin Plant
- I have a degree in Environmental Engineering
-l've spent my life using and disposing of Plastic

What are Plastics?

- Synthetic organic polymers
- In other words:
- Manmade containing carbon in long chains
-Comes from Greek "plastikos" - can be shaped and molded
- Primary source is hydrocarbons from petroleum and natural gas

Qualities of Plastics

- Cheap versus other options
- Lightweight (\& strength to weight ratio is high)
- Durable

These are both blessings and curses

Contents of Plastics

- Carbon
- Hydrogen
(always)
- Oxygen
(often)
- Nitrogen
- Chlorine
- Fluorine
(make it permanent like PVC)
Sulfur, and many other chemicals for specific qualities they add

Early History of Plastics

-1862 - Celluloid - nitrocellulose and camphor resin
-1907 - Bakelite - formaldehyde and coal tar
-1930's -Nylon (Dupont), Plexiglass, Polystyrene, Saran Wrap, Kapton insul

Post WWII
Proliferation Life Magazine 8/1/1955

Throwaway Living
DISPOSABLE ITEMS CUT DOWN HOUSEHOLD CHORES
\qquad

 plates and toxels, have been around, a long time but
are nour Leing made emore attractive. are nowt leing made more attractive.
At the lotom of the pieture to the ef a Newe
York Coty Department of Sanitution trash can, are York City Department of Sanitition terath can, aree
some throwanay vases and lowers, popeorn that

\qquad

 lasket are thrownay drapries, ash trays, gartage
tages, bot puds, mats and a ferding dith for doge.

(1)
(3) 4
(2)

Chemistry of Common Plastics

1. PET - Polyethylene Terephthate $\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{4}\right)$
2. HDPE - High Density Polyethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{n}$
3. PVC - Poly Vinyl Chloride $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}\right)$ n
4. LDPE - Low Density Polyethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{n}$
5. PP - Polypropylene $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right) \mathrm{n}$
6. PS - Polystyrene $\left(\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{n}$
7. Polycarbonate $\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}\right) n$

Plastics Production: 400 million metric tons

1. PET - 9%
2. HDPE -13%
3. PVC -10%
4. LDPE - 16\%
5. PP - 18%
6. PS - 6\%
7. Other, including polyester, polyamide and acrylic fibers - 28\%

Alphabet Soup of other Plastics

- ABS - related to polystyrene
- PU - polyurethane
- PA - nylon
- PCE - cleaning solvent
- PEEK - polyetheretherketone
- PEI - Ultem, similar to polycarbonate
- PF - Bakelite
- PMMA - epoxy, plexiglass, lucite
- PSU - high temperature
- PTFE -Teflon

And More

- MF - melamine
- UF - urea formaldehyde (wood adhesive)
- Polyamide - Kapton
- Silicone
- MX - a mixture of any of the above

Bio-Plastics

- PLA - bio degradable (at high temperatures) \}
- Furan- resin in foundry sands
- Plastarch - thermoplastic from cornstarch
- PHB

Behavioral Psychology of Plastics

- Symbolizes abundance and prosperity
- Packaging encourages overeating - impulse buying
- Water in plastic bottles is sold as "safer" - true in some regions
- Littering is a behavior rising out of minimal perceived value of plastic

Two Definitions of Recycling

- Recovering and reprocessing waste materials for use in new products
- Allowing consumption of goods and services that meet basic needs and quality of life without jeopardizing the needs of future generations

Recycling in History

- Origins in modifying something for reuse to overcome scarcity

1. Monks washed the ink from parchment to reuse
2. Artists painted over canvases
3. Building materials like stone, brick and metals were scavenged
4. Depression era Americans saved or patched for reuse

Today, it is a side effect of abundance. People discard old to buy new.

Recycling in the early 20th Century

- Returnable milk bottles - bottle exchanges cleaned and redistributed
- Glass Coke bottles - on average used 22 times

Current Recycling Levels

- Iron and Steel - 70\%-90\% is recycled
- Office paper - more than 50\%
- Cardboard - similar to Iron \& Steel
- Aluminum - 35\% overall, 50\% of cans
- Electronics waste - 12\%-17\%
- Plastics - 5-9\%

Economics of Recycling

- Depends on cost and quality of recycled product compared to virgin
- Sorting mixed products can be difficult
- Energy and water use are often significant factors
- Life Cycle Analysis is a feasible and fair way to compare
- Facilities require investments and market for recycled products changes

Behavioral Psychology of Recycling

- Confronting people with the waste we generate
- Virtue signaling
- Atonement
- Producers transfer responsibility to consumers
- Once it leaves the curb, we did our part
- Incentives like can and bottle deposits work
- What really happens to our recycling?

History of U.S. Plastics Recycling

- Keep America Beautiful 1953 - originally anti litter
- Chasing Arrows logo designed in 1970
- Curbside recycling starts in 1981
- "7 types of Plastic" with chasing arrows 1988
- Single stream recycling starts in 1992
- China stops taking our plastic in 2018

The Good, The Bad, and the Ugly
 Enter Clint Eastwood

Good of Plastic Recycling

- Drink bottles (PET-\#1) and Milk bottles (HDPE-\#2)
- Most other thermo-plastics can be recycled if segregated
- Mixed plastics can be burned for energy if not sortable
- Movements like Plastic Free July are effective in building awareness
- Infrastructure and research improving options
- Bio - plastics hold promise
- US and Europe are not large sources of ocean plastics

Bad of Plastics Recycling

- Thermoset plastics are difficult to recycle
- 90% of ocean plastics come from 10 rivers in Asia and Africa, or maybe not
- Bio-plastics are hard to distinguish from petroleum-based ones
- Incinerating plastics adds GHG and can release toxic chemicals
- Recycling alone will probably never scale enough to eliminate disposal

Ugly of Plastics Recycling

- Turtle w/straw - goes on for 8 minutes
- There are 5 "garbage patches" in the oceans today
- Beaches are littered by people who use the beach as well as by currents
- Micro-plastics are ubiquitous
- 10,000 shipping containers per year are lost at sea, many filled with plastics
- 1000 year life of plastic was made up by a 9 year old
- in East Palestine, Ohio, several train cars filled with mono-vinyl chloride derailed and were deliberately ignited

A Better Future

- Research is finding substitute materials and new recycling methods
- Recycling programs improve awareness \& commitment of consumers
- Plastics should be priced to include reuse, recycling, or disposal cost
- Life Cycle Analysis can be mandated and reduce opacity of information
- Move capture upstream: ocean \Rightarrow river \Rightarrow sources
- Design plastics to breakdown
- Reduce, Refuse, Reuse

